Клетки крови и их функции

Содержание:

Нормальное количество лейкоцитов

Для здорового человека существуют определенные нормы количества форменных кровяных элементов при расчете на 1 мм3. Эти показатели следующие:

  1. Эритроциты – 3,5-5 миллионов, белок гемоглобин – 120-155 г/л.
  2. Тромбоциты – 150-450 тыс.
  3. Лейкоциты – от 2 до 5 тысяч.

Лабораторные результаты количества лейкоцитов обычно отображаются в виде набора значений, известного как опорный диапазон, который иногда называют “нормальным диапазоном”. “Референтный диапазон” включает в себя верхний и нижний пределы результатов лабораторного анализа, основанного на статистически большой группе здоровых людей, которые ранее уже сдавали этот анализ.

Подсчет лейкоцитов может обнаружить скрытые инфекции в вашем теле и предупредить врачей о недиагностированных медицинских состояниях, таких как аутоиммунные заболевания, иммунодефициты и нарушения в крови.

Ваша лаборатория будет сравнивать результаты лабораторных тестов с эталонными значениями, чтобы обнаружить проблемы, если какие-либо из ваших результатов выпадают за пределы диапазона ожидаемых значений. Это позволяет получить подсказки, чтобы помочь определить возможные нарушения в организме или заболевания.

Участники проспективного когортного исследования с исходным уровнем лейкоцитов менее {amp}lt; 3500 и более {amp}gt; 6000 единиц показывали более высокую смертность, чем те, люди, у кого анализы были в диапазоне от 3500 до 6000 (единиц в мкл) или от  3,5*10/9 до 6,0*10/9 л. (4)

В дополнительном независимом исследовании, охватывавшем 7 стран, был сделан вывод, что каждое увеличение лейкоцитов на 1,000 единиц/мкл (1,0*10/9 л) было связано с 21%-ным повышением смертности в течение 5-летнего периода от сердечно-сосудистых заболеваний (после корректировки на факторы риска). (48)

https://www.youtube.com/watch?v=QSysLGBmrMo

В исследовании японских ученых количество лейкоцитов в диапазоне от 9,000 до 10,000 единиц в мкл крови показали увеличение риска смертности от сердечно-сосудистых заболеваний в 3,2 раза по сравнению с теми, у кого эти клетки крови находились в количестве от 4,000 до 4,900 единиц в мкл. (5)

нейтрофилы 55-73 %
лимфоциты 20-40 %
эозинофилы 1-4 %
моноциты 2-8 %
базофильные гранулоциты 0,5-1%

Гемосканирование: отличительные особенности

Во-первых, естественно, что используется настоящее оборудование. То есть очень хорошие, очень дорогие лабораторные микроскопы, которые могут работать в разных режимах. Режим тёмного поля, например, и в обычном режиме светлого поля, фазовый контраст… Куча различных крутых наворотов. И за некоторые разработки, например, была вручена в своё время Нобелевская премия. Действительно из науки.

Это дорогие аппараты, от 5 — 10 тысяч долларов. Мало того, они практически все с видеоприставками. То есть ты не смотришь в два несчастных окуляра, а изображение выводится на экран. И ты видишь при большом увеличении кровь, это очень удобно. Это действительно помогает ставить массу диагнозов.

До момента постановки диагноза, всё нормально, никаких подозрений у человека не возникает. А вот зато потом ему начинают рассказывать всякие интересные истории.

Тромбоциты (кровяные пластинки)

Главной функцией тромбоцитов является участие в гемостазе. Тромбоциты помогают «ремонтировать» кровеносные сосуды, прикрепляясь к поврежденным стенкам, а также участвуют в свертывании крови, которое предотвращает кровотечение и выход крови из кровеносного сосуда.

Способность тромбоцитов прилипать к чужеродной поверхности (адгезия), а также склеиваться между собой (агрегация) происходит под влиянием разнообразных причин. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин (вещество, вызывающее сужение кровеносных сосудов, уменьшение кровотока), адреналин, норадреналин, а также вещества, получившие название пластинчатых факторов свертывания крови.

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Еще одни важные клетки крови человека – тромбоциты. Это плоские структуры, размеры которых в 10 раз меньше, чем эритроцитов. Такие мелкие объемы позволяют им быстро скапливаться и слипаться между собой для выполнения своего прямого назначения.

В составе организма этих стражей порядка насчитывается около 1,5 триллиона штук, количество постоянно пополняется и обновляется, так как срок жизни их, увы, очень мал – всего около 9 дней. Почему стражи порядка? Это связано с функцией, которую они выполняют.

Эритроциты – клетки, транспортирующие кислород к тканям

Эритроцитами называют высокоспециализированные клетки, не имеющие ядра (утрачивается в ходе созревания). Большая часть клеток представлена двояковогнутыми дисками, средний диаметр которых составляет 7 мкм, а периферическая толщина — 2-2,5 мкм. Существуют также шарообразные и куполообразные эритроциты.

Эритроциты и лейкоциты человека

У патологических и старых клеток пластичность очень низкая, в связи с чем они задерживаются и разрушаются в капиллярах ретикулярной ткани селезенки.

Эритроциты различны между собой по:

  • Размеру;
  • Возрасту;
  • Устойчивости к воздействию неблагоприятных факторов.

Видео: Эритроциты

Эритроциты – самые многочисленные клетки в крови человека

Эритроциты классифицируют по степени зрелости на группы, имеющие свои отличительные признаки

стадия созревания отличительные признаки
Эритробласт диаметр — 20-25 мкм; ядро, занимающее более 2/3 клетки с ядрышками (до 4); цитоплазма ярко базофильная, фиолетового цвета.
Пронормоцит диаметр — 10-20 мкм; ядро без ядрышек; хроматин грубый; цитоплазма светлеет.
Базофильный нормобласт диаметр — 10-18 мкм; хроматин сегментированный; формируются зоны базохроматина и оксихроматина.
Полихроматофильный нормобласт диаметр — 9-13 мкм; деструктивные изменения ядра; оксифильная цитоплазма вследствие высокого содержания гемоглобина.
Оксифильный нормобласт диаметр — 7-10 мкм; цитоплазма розовая.
Ретикулоцит диаметр — 9-12 мкм; цитоплазма желто-зеленая.
Нормоцит (зрелый эритроцит) диаметр — 7-8 мкм; цитоплазма красная.

В периферической крови встречаются как зрелые, так и молодые и старые клетки. Молодые эритроциты, в которых имеются остатки ядер, называются ретикулоцитами.

Процесс образования эритроцитов называется эритропоэзом.

Эритропоэз происходит в:

  • Костном мозге костей черепа;
  • Таза;
  • Туловища;
  • Грудины и позвоночных дисках;
  • До 30 лет эритропоэз происходит также в плечевых и бедренных костях.

Ежедневно костный мозг образует более 200 млн. новых клеток.

Функции эритроцитов

  • Выполняют транспортную функцию. Кроме кислорода и углекислого газа клетки переносят липиды, белки и аминокислоты;
  • Способствуют выведению токсинов из организма, а также ядов, которые образуются в результате метаболических и жизненных процессов микроорганизмов;
  • Активно участвуют в поддержании баланса кислоты и щелочи;
  • Участвуют в процессе свертываемости крови.

Тромбоциты

Эти клетки крови представляют собой маленькие безъядерные пластинки и могут иметь круглую или овальную форму. Во время активации, когда они находятся у поврежденной стенки сосуда, у них образуются выросты, поэтому они выглядят как звезды. В тромбоцитах есть микротрубочки, митохондрии, рибосомы, специфические гранулы, содержащие вещества, необходимые для свертывания крови. Эти клетки снабжены трехслойной мембраной.

Производятся тромбоциты в костном мозге, но совершенно другим путем, чем остальные клетки. Кровяные пластинки образуются из самых крупных клеток мозга – мегакариоцитов, которые, в свою очередь, образовались из мегакариобластов. У мегакариоцитов очень большая цитоплазма. В ней после созревания клетки появляются мембраны, разделяющие ее на фрагменты, которые начинают отделяться, и таким образом появляются тромбоциты. Они выходят из костного мозга в кровь, находятся в ней 8-10 дней, затем погибают в селезенке, легких, печени.

Кровяные пластинки могут иметь разные размеры:

  • самые мелкие – микроформы, их диаметр не превышает 1,5 мкм;
  • нормоформы достигают 2-4 мкм;
  • макроформы – 5 мкм;
  • мегалоформы – 6-10 мкм.

Тромбоциты выполняют очень важную функцию – они участвуют в формировании кровяного сгустка, который закрывает повреждение в сосуде, тем самым не давая крови вытекать. Кроме этого, они поддерживают целостность стенки сосуда, способствуют быстрейшему ее восстановлению после повреждения. Когда начинается кровотечение, тромбоциты прилипают к краю повреждения, пока отверстие не будет полностью закрыто. Налипшие пластинки начинают разрушаться и выделять ферменты, которые воздействуют на плазму крови. В результате образуются нерастворимые нити фибрина, плотно закрывающие место повреждения.

Врачи тоже верят в псевдометодики

Я успел проучиться и по клинической токсикологии, и по лабораторной диагностике, и по военно-учебной экспертизе. То есть у меня достаточно большой спектр знаний и навыков. И так как у меня есть лабораторная диагностика, я знаю, как на самом деле выглядит кровь. Исключительно поэтому я могу разобраться, что такое гемосканирование.

Что интересно, на этом даже попадаются те врачи, которые либо мало работали с кровью, либо не очень хорошо учились. И часто приходилось слышать, что да, мы ей пользуемся, это хорошая диагностика.

А потом, когда начинаешь спрашивать: ребята, ну хорошо, вы видите бактерии, расскажите мне размер самой большой бактерии – кишечной палочки. Какой размер? Она будет существенно меньше эритроцитов. Теперь расскажите мне, какие паразиты есть внутри эритроцитов. Их всего две или три штуки, если я не ошибаюсь. По-моему, малярийные плазмодии и ещё бабезии. Какого они размера, как они выглядят, как они окрашиваются и так далее.

Когда начинаешь эти вопросы задавать, они начинают чесать голову и говорить: слушай, а ведь правда… А ведь действительно, оно как-то не соотносится с тем, что рассказывают эти граждане. То есть это исключительно бизнес на незнании. Шарлатаны в общем-то всегда работали на незнании, на том, в чём люди не разбираются.

История изучения

В 1658 году голландский натуралист Ян Сваммердам впервые увидел эритроциты в микроскоп, а в 1695 году Антони ван Левенгук зарисовал их, назвав «красными корпускулами». После этого новые виды клеток крови не изучались, и лишь в 1842 году французский врач Альфред Франсуа Донне открыл тромбоциты. В следующем году его соотечественник и коллега Габриэль Андраль описал лейкоциты одновременно и независимо с английским врачом . В результате этих открытий зародилась новая область медицины — гематология. Дальнейший прогресс в изучении клеток крови наметился в 1879 году, когда Пауль Эрлих опубликовал свою методику клеток крови.

Хромосома

Хромосо́мы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для ее хранения, реализации и передачи.

Хромосомы четко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Геном человека состоит из 23 пар хромосом, которые содержатся в ядре, а также митохондриальной ДНК. 

В ходе выполнения проекта «Геном человека» была определена последовательность ДНК всех хромосом и митохондриальной ДНК. В настоящее время эти данные активно используются по всему миру в биомедицинских исследованиях.

Сперматозоиды (синего цвета) пытаются проникнуть в яйцеклетку человека

OME / SPL / East News

Увеличение: x6500

Каждый сперматозоид имеет длинный хвост и овальную голову. Примечательно, что женщины обычно вырабатывают одно яйцо (яйцеклетку) в месяц, тогда как мужчины вырабатывают миллионы сперматозоидов. Но что самое удивительное – что только один из миллиона сперматозоидов сможет проникнуть в наружный слой яйцеклетки и оплодотворить ее. 

Оплодотворением считается, когда генетический материал сперматозоида (дезоксирибонуклеиновая кислота, ДНК) сольется с ДНК яйцеклетки. Как только это происходит, яйцеклетка сразу же образует барьер для проникновения других сперматозоидов. 

Стволовые клетки

К ним относятся:

  • красный костный мозг;
  • селезенка.

Особенно большое значение имеет костный мозг. Он располагается в полостях плоских костей и вырабатывает абсолютно все клетки крови. У новорожденных детей в этом процессе принимают участие и трубчатые образования (голень, плечо, кисти и стопы). С возрастом остается такой мозг только в тазовых костях, но его хватает, чтобы обеспечить весь организм форменными элементами крови.

Еще один орган, в котором не вырабатываются, но запасаются на экстренные случаи достаточно объемные количества кровяных телец – селезенка. Это своеобразное “кровяное депо” каждого человеческого организма.

Стволовые клетки крови – самые важные недифференцированные образования, играющие роль в гемопоэзе – образовании самой ткани. Поэтому их нормальное функционирование – залог здоровья и качественной работы сердечно-сосудистой и всех остальных систем.

В тех случаях, когда человек теряет большое количество крови, которое сам мозг восполнить не может или не успевает, необходим подбор доноров (также это необходимо в случае обновления крови при лейкозах). Процесс этот сложный, зависит от множества особенностей, например, от степени родства и сопоставимости людей друг с другом по другим показателям.

Взятки гладки?

Доказать, что вас обманули, практически нереально. Во‑первых, как уже говорилось, не всякий врач сможет заподозрить в методике подлог. Во‑вторых, даже если пациент пойдет в обычный диагностический центр и у него там ничего не найдут, можно в крайнем случае свалить все на врача-оператора, проводившего диагностику. И действительно, визуальная оценка сложных изображений целиком и полностью зависит от квалификации и даже физического состояния того, что проводит оценку. То есть метод не является достоверным, поскольку напрямую зависит от человеческого фактора. В-третьих, всегда можно сослаться на некие тонкие материи, которые пациенту понять не дано. Это последний рубеж, на котором обычно насмерть стоят все околомедицинские мошенники.

Что же мы имеем в сухом остатке? Непрофессиональных лаборантов, которые выдают случайные артефакты (а может, и срежиссированные) в капле крови за страшные заболевания. И потом предлагают лечить их пищевыми добавками. Естественно, все это за деньги, и очень немаленькие.

Имеет ли данная методика диагностическую ценность? Имеет. Безусловно. Такую же, как и традиционная микроскопия мазка. Можно увидеть, например, серповидноклеточную анемию. Или перницитозную анемию. Или другие действительно серьезные заболевания. Только вот, к огромному сожалению мошенников, встречаются они редко. Да и не продашь таким пациентам толченый мел с аскорбинкой. Им нужно настоящее лечение.

А так — все очень просто. Обнаруживаем несуществующую болезнь, а потом успешно ее излечиваем. Все довольны, особенно доволен вон тот гражданин, у которого из крови изгнали обломок антенны космической связи комара-звонца… И никому не жалко пущенных на ветер, а точнее, на обогащение мошенников, денег.

Впрочем, не всем. Некоторые отстаивают свои права во всех возможных инстанциях. В распоряжении автора есть копия письма Управления Росздравнадзора по Краснодарскому краю, куда обратились пострадавшие от гемосканирующих «врачей». Пациенту была диагностирована куча болезней, которые предлагалось лечить не меньшей кучей биологически активных добавок к пище. По результатам проверки выяснилось, что медицинское учреждение, проводившее диагностику, нарушает лицензионные требования, не заключает договор на оказание платных услуг (врач берет деньги наличными), нарушаются правила ведения медицинской документации. Были выявлены и другие нарушения.

Цитатой из письма Центрального аппарата Росздравнадзора и хотелось бы закончить статью: «Методика ‘Гемосканирование’ на рассмотрение и получение разрешения на применение в качестве новой медицинской технологии в Росздравнадзор не представлялась и не разрешена к применению в медицинской практике». Яснее не скажешь.

Статья «Темные поля крови» опубликована в журнале «Популярная механика»
(№1, Январь 2010).

Функции плазмы

Вязкая жидкость желтоватого цвета, занимающая до 60% от общей массы крови. Состав очень разнообразен (несколько сотен веществ и элементов) и включает в себя соединения из различных химических групп. Так, в эту часть крови входят:

  • Белковые молекулы. Считается, что каждый белок, существующий в организме, присутствует изначально в плазме крови. Особенно много альбуминов и иммуноглобулинов, играющих важную роль в защитных механизмах. Всего известно около 500 наименований белков плазмы.
  • Химические элементы в форме ионов: натрий, хлор, калий, кальций, магний, железо, йод, фосфор, фтор, марганец, селен и другие. Здесь присутствует практически вся Периодическая система Менделеева, примерно 80 наименований из нее находятся в плазме крови.
  • Моно-, ди- и полисахариды.
  • Витамины и коферменты.
  • Гормоны почек, надпочечников, половых желез (адреналин, эндорфин, андрогены, тестостероны и другие).
  • Липиды (жиры).
  • Ферменты как биологические катализаторы.

Одна из основных функций — это поддержка осмотического давления. Благодаря ей происходит равномерное распределение жидкости внутри клеточных мембран. Осмотическое давление плазмы одинаково с осмотическим давлением в клетках крови, поэтому достигается баланс.

Еще одна функция – это транспортировка клеток, продуктов метаболизма и питательных веществ к органам и тканям. Поддерживает гомеостаз.

Больший процент в составе плазмы занимают белки – альбумины, глобулины и фибриногены. Они в свою очередь выполняют ряд функций:

  1. поддерживают водный баланс;
  2. осуществляют кислотный гомеостаз;
  3. благодаря им стабильно функционирует иммунная система;
  4. поддерживают агрегатное состояние;
  5. участвуют в процессе свертываемости.

Кому будет полезна книга «Пациент разумный»

Судя по отзывам, книга «Пациент разумный» очень хорошо заходит в том числе для пожилых людей. Я старался писать её максимально доступным языком и рассчитывал в первую очередь на них.

Потому что реклама из почтового ящика, из радио идет постоянно. Там то передачи с якобы врачами про какие-то чудо-добавки, которые «позвоните сейчас, получите скидку». То передачи про какие-то диагностические чудо-вещи. То обзвон по телефону, когда предлагают, что это программа мэра, вам со скидкой, всего за 45 тысяч. Приезжайте, либо к вам приедет оператор, всё сделает, всё проверит… Совсем “недорого”, да. И так далее.

Т.е. есть масса методов оболванивания именно вот этой категории населения. У неё, во-первых, снижена критичность мышления, к сожалению, мы и сами будем такими же со временем. Не хотелось бы, но придётся. Снижается критичность восприятия и самое интересное, что снижается критичность той информации, которая идёт от близких. То есть близкие не воспринимаются как источник достоверной информации. Их начинают подозревать во всяком, в захвате квартиры и прочих нехороших вещах…

Иногда да, иногда не без оснований, но всё-таки в большинстве случаев никто никого травить не собирается. Но к печатным источникам у них до сих пор осталось доверие. Поскольку это люди пожилые, хорошо застали советский период и помнят, что абы кого не печатают. Можем посмотреть на меня: абы кого сейчас печатают. И одно дело, лекция в интернете, а! в ваших интернетах, знаем мы, чего они там делают. А вот здесь книга, то есть это как бы факт. Ну и плюс здесь достаточно большое количество источников. Их там почти 200, по-моему. На такую небольшую книжку.

Группы крови и резус-фактор

На поверхности красных кровяных телец располагаются антигены, которых существует насколько разновидностей. Именно поэтому кровь одного человека может отличаться от крови другого. Антигены формируют резус-фактор и групповую принадлежность крови.

антиген группа крови
I
0A II
0B III
AB IV

Определение резус-фактора и групповой принадлежности крови человека имеет большое значение при переливании донорской крови. Некоторые антигены несовместимы друг с другом, вызывая разрушение клеток крови, что может привести к гибели пациента

Очень важно переливать кровь от донора, группа крови и резус-фактор которого совпадают с показателями реципиента

Что нельзя увидеть в микроскоп

В капле биологической жидкости под микроскопом нельзя увидеть:

  1. Глисты (яйца и их личинки). Теоретически некоторые виды гельминтов могут попасть в кровь и мигрировать с её током по организму. Однако здесь необходимо сопоставить размер клеток и яиц. Эритроцит в диаметре не более 10 мкм, яйцо шириной 50-85 мкм, высотой – 140-240. Личинки в диаметре еще крупнее. Но иногда эритроциты располагаются плоской стороной к наблюдателю. Именно эти странные палочки ошибочно принимают за глисты.
  2. Кристаллы. Существует мнение, что при обострении подагры соли мочевой кислоты можно обнаружить в крови. Однако увидеть такие кристаллы под микроскопом даже при 2000 увеличении нельзя. Кристаллы ошибочно могут принять за другие оставляющие биологической жидкости.
  3. Бактерии и простейшие. Чаще всего эксперименту подвергаются эритроциты. За счёт своей дискообразной формы с явным утоньшением в центре. Под определённым углом падения света они начинают выглядеть как яркий диск со светлым пятном посередине. Неопытный исследователь может подумать, что это и есть патогенный микроорганизм.

Иммунные клетки, свободные радикалы, токсины, грибки также нельзя распознать в крови под микроскопом.

Изучение биологической жидкости под микроскопом – одно из самых захватывающих направлений в микробиологии. Клетки крови имеют разную структуру и выполняют разные задачи. В первую очередь, для нормальной работы организма важен их количественный и качественный состав. Любые изменения могут указывать на развитие патологии. Поэтому первое, что сделает врач, направит пациента на сдачу анализа крови.

Как паразиты попадают в кровь

И есть несколько вариантов. Конечно, можно предположить, что он попал, например, из воздуха. Вот мы сейчас сидим и у нас тут столько всего летает. Если мы воду сейчас возьмём под микроскоп, то обнаружим, что она кишит всякой живностью.

А можно посмотреть видео (их достаточно много на Youtube) по запросу либо гемосканирование, либо диагностика по живой капле крови. И там очень хорошо видно, что такие люди не заморачиваются правилами лабораторной диагностики. То есть вот как есть в одежде: без шапочек, без халатов, соответственно, с них всё это сыпется в эту кровь. Что мы там увидим – всё, что туда нападает. Ничего другого.

Брать и исследовать анализы необходимо в медицинских халатах, шапочках и перчатках

А скорее всего, что всего всё-таки это было срежиссировано. То есть эта вещь туда помещена нарочно. Точно так же, как и паразит, личинка на рисунке, который мы видели. Зачем ждать милости от природы, нужно управлять процессом.

Надо, чтобы человеку поставили диагноз какой-нибудь страшный. И чтобы он тут же начал немедленно покупать биодобавки, которые соответственно этого паразита выгонят.

Что интересно, на этих видео это даже видно. Потому что, когда они начинают изучать кровь в начале исследования, они помещают её на одну часть предметного стекла и накрывают покровным, и начинают смотреть. А когда смотрят контрольный, после того, как уже дали препарат, они это же стекло передвигают в сторону. И на это же стекло, только на другую часть, свободную, наносят следующую каплю. Это по всем правилам лабораторной диагностики запрещено напрямую.

Потому что открытое стекло контактирует с воздухом, туда оседает всё, что только можно. Только следующее стекло можно взять и поместить туда мазок, каплю, либо ещё что-то. И скорее всего, там просто заранее все подготовлено. С одной стороны подготовлена какая-то патология, с другой стороны — какая-то норма.

Как срежиссировать патологию в анализе

Например, я могу легко подготовить стёкла практически под любую патологию. При помощи простейших реактивов, их просто наносят, растирают на стекле и оставляют высыхать. После этого, если вы кровь туда поместите, эритроциты, например, будут превращаться в ёжиков, сморщиваться, если там сделать гиперраствор. Либо будут фрагментироваться, либо наоборот слипаться, либо ещё что-то. То есть всё это можно срежиссировать и показать, что на самом деле человек смертельно болен.

Д.Пучков Это ж бездонная бочка для зарабатывания денег.

Абсолютно бездонная. И человек не может сам это распознать. И когда мне говорят: да люди сами разберутся, они сами будут знать. Ничего подобного. Вот, по крайней мере на эту вещь клюют практически все.

Д.Пучков Медицинское образование сколько лет, шесть получают?

Шесть – это минимум. Я посчитал, что, наверное, больше учился, чем работал. Фактически так и получилось, потому что у меня достаточно много разных специализаций. Это наследие страшного советского прошлого, когда военный врач мог учиться абсолютно бесплатно. Причём ещё гоняли на эту самую учёбу по разнарядке, вот ты, иди учиться.

Ткани и органы человека под микроскопом (15 фото)

Почти все из представленных здесь изображений сделаны с помощью сканирующего электронного микроскопа (СЭМ). Испускаемый таким прибором пучок электронов взаимодействует с атомами нужного объекта, результатом чего становятся 3D-изображения высочайшей разрешающей способности. Увеличение в 250000 раз позволяет разглядеть детали размером 1-5 нанометров (то есть миллиардных долей метра).

Первое СЭМ-изображение получил в 1935 году Макс Кнолль, а уже в 1965 году Кембриджская инструментальная компания предложила фирме «Дюпон» свой «Стереоскан». Сейчас такие устройства широко применяются в научно-исследовательских центрах.

Рассматривая предлагаемые ниже снимки, вы совершите путешествие по своему телу, начиная с головы и заканчивая кишечником и органами таза. Вы увидите, как выглядят нормальные клетки и что происходит с ними, когда их поражает рак, а также получите наглядное представление о том, как, скажем, происходит первая встреча яйцеклетки и сперматозоида.

Красные кровяные тельца

Здесь изображена, можно сказать, основа вашей крови – красные кровяные тельца (RBC). На этих симпатичных двояковогнутых клетках лежит ответственная задача разносить по всему телу кислород.

Обычно в одном кубическом миллиметре крови таких клеток 4-5 миллионов у женщин и 5-6 миллионов у мужчин. У людей, живущих на высокогорье, где ощущается недостаток кислорода, красных телец еще больше.

Расщепленный человеческий волос

Чтобы избежать такого невидимого для обычного глаза расщепления волос, надо регулярно стричься и пользоваться хорошими шампунями и кондиционерами.

Клетки Пуркинье

Из 100 миллиардов нейронов вашего мозга клетки Пуркинье одни из самых крупных. Помимо прочего, они отвечают в коре мозжечка за двигательную координацию. На них губительно действуют как отравление алкоголем или литием, так и аутоиммунные заболевания, генетические отклонения (включая аутизм), а также нейродегенеративные болезни (Альцгеймера, Паркинсона, рассеянный склероз и т. п.).

Чувствительные волоски уха

Вот как выглядят стереоцилии, то есть чувствительные элементы вестибулярного аппарата внутри вашего уха. Улавливая звуковые колебания, они контролируют ответные механические движения и действия.

Кровеносные сосуды зрительного нерва

Здесь изображены кровеносные сосуды сетчатки глаза, выходящие из окрашенного в черный цвет диска зрительного нерва. Этот диск представляет собой «слепое пятно», так как на этом участке сетчатки нет световых рецепторов.

Вкусовой сосочек языка

На языке у человека находится около 10000 вкусовых рецепторов, которые помогают определить на вкус соленое, кислое, горькое, сладкое и острое.

Тромб

Вспомните, как красиво выглядели здоровые красные кровяные тельца. А теперь посмотрите, какими они становятся в паутине смертельно опасного кровяного тромба. В самом центре находится белое кровяное тельце (лейкоцит).

Легочные альвеолы

Перед вами вид вашего легкого изнутри. Пустые полости – это альвеолы, где и происходит обмен кислорода на углекислый газ.

Ворсинки тонкой кишки

Ворсинки тонкой кишки увеличивают ее площадь, что способствует лучшему усвоению пищи. Это выросты неправильной цилиндрической формы высотой до 1,2 миллиметра. Основу ворсинки составляет рыхлая соединительная ткань.

В центре, подобно стержню, проходит широкий лимфатический капилляр, или млечный синус, а по сторонам от него располагаются кровеносные сосуды и капилляры. По млечному синусу в лимфу, а затем в кровь попадают жиры, а по кровеносным капиллярам ворсинок поступают в кровоток белки и углеводы.

При внимательном рассмотрении можно заметить в бороздках пищевые остатки.

Человеческая яйцеклетка с корональными клетками

Здесь вы видите человеческую яйцеклетку. Яйцеклетка покрыта гликопротеиновой оболочкой (zona pellicuda), которая не только защищает ее, но и помогает захватить и удержать сперматозоид. К оболочке прикреплены две корональные клетки.

Человеческий эмбрион и сперматозоиды

Это похоже на войну миров, на самом же деле перед вами яйцеклетка через 5 дней после оплодотворения. Некоторые сперматозоиды все еще удерживаются на ее поверхности.

Изображение сделано с помощью конфокального (софокусного) микроскопа. Яйцеклетка и ядра сперматозоидов окрашены в пурпурный цвет, тогда как жгутики сперматозоидов – в зеленый.

Голубые участки – это нексусы, межклеточные щелевые контакты, осуществляющие связь между клетками.

Имплантация человеческого эмбриона

Вы присутствуете при начале нового жизненного цикла. Шестидневный эмбрион человека имплантируется в эндометрий, слизистую оболочку полости матки. Пожелаем ему удачи!

Via 15 Beautiful Microscopic Images from Inside the Human Body

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector